Borg–marchenko-type Uniqueness Results for Cmv Operators

نویسنده

  • STEPHEN CLARK
چکیده

We prove local and global versions of Borg–Marchenko-type uniqueness theorems for half-lattice and full-lattice CMV operators (CMV for Cantero, Moral, and Velázquez [15]). While our half-lattice results are formulated in terms of Weyl–Titchmarsh functions, our full-lattice results involve the diagonal and main off-diagonal Green’s functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators

We develop singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators. In particular, we establish existence of a spectral transformation as well as local Borg–Marchenko and Hochstadt–Liebermann type uniqueness results.

متن کامل

Uniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators

New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary sp...

متن کامل

On Local Borg–Marchenko Uniqueness Results

We provide a new short proof of the following fact, first proved by one of us in 1998: If two Weyl–Titchmarsh m-functions, mj(z), of two Schrödinger operators Hj = − d2 dx2 + qj , j = 1, 2 in L2((0, R)), 0 < R ≤ ∞, are exponentially close, that is, |m1(z) − m2(z)| = |z|→∞ O(e −2 Im(z)a), 0 < a < R, then q1 = q2 a.e. on [0, a]. The result applies to any boundary conditions at x = 0 and x = R and...

متن کامل

Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials

Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we develop a detailed spectral theoretic treatment of Schrödinger operators with matrix-valued potentials, with special emphasis on distributional potential coefficients. Our principal method relies on a supersymmetric (factorization) formalism underlying Miura’s transformation, which intimately connects the tri...

متن کامل

ar X iv : m at h / 99 10 08 9 v 1 [ m at h . SP ] 1 8 O ct 1 99 9 ON LOCAL BORG - MARCHENKO UNIQUENESS RESULTS

We provide a new short proof of the following fact, first proved by one of us in 1998: If two Weyl-Titchmarsh m-functions, m j (z), of two Schrödinger operators H j = − d 2 dx 2 + q j , j = 1, 2 in L 2 ((0, R)), 0 < R ≤ ∞, are exponentially close, that is, |m 1 (z) − m 2 (z)| = |z|→∞ O(e −2 Im(z 1/2)a), 0 < a < R, then q 1 = q 2 a.e. on [0, a]. The result applies to any boundary conditions at x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008